Blog

Battling anthracnose: unearthing the plant’s arsen | Newswise

Newswise — Plant diseases caused by pathogens like Colletotrichum fructicola lead to significant agricultural losses, particularly in fruit crops such as pear, apple, and peach. Traditional control methods often fail as pathogens adapt to plant defenses. Nonhost resistance (NHR) offers a promising alternative due to its robustness and broad-spectrum effectiveness. NHR occurs when a plant species is naturally resistant to pathogens affecting other species. Understanding the molecular mechanisms behind NHR is crucial for developing sustainable and effective disease management strategies. Based on these challenges, exploring NHR mechanisms is essential for advancing agricultural resilience.

Researchers from Anhui Agricultural University, in collaboration with Northwest A&F University, have made a significant stride in understanding plant-pathogen interactions. Their findings (DOI: 10.1093/hr/uhae078), published in the journal Horticulture Research on March 14, 2024, reveal the role of novel core effectors in the nonhost Nicotiana benthamiana‘s response to the pear anthracnose pathogen Colletotrichum fructicola.

The research team isolated a virulent strain of Colletotrichum fructicola from pear and studied its interaction with the nonhost plant Nicotiana benthamiana. They identified four novel core effectors—CfCE4, CfCE25, CfCE61, and CfCE66—using bioinformatics and agroinfiltration-mediated screening. These effectors were found to induce cell death and activate immune responses in N. benthamiana. The effectors’ activity depends on the BAK1 coreceptor and helper NLRs (ADR1, NRG1, and NRCs). Further analysis showed that these core effectors trigger significant immune responses, enhancing the plant’s resistance to the pathogen. This study represents the first comprehensive characterization of Colletotrichum fructicola core effectors, providing valuable insights into the mechanisms of NHR and highlighting the potential for using these findings to develop new strategies for managing anthracnose disease in various horticultural crops.

Dr. Jiajun Nie, a corresponding author of the study, stated, “Our findings represent a significant advancement in understanding NHR. By identifying these core effectors, we can better comprehend how plants recognize and respond to pathogens, which is crucial for developing effective disease management strategies.”

The identification of these core effectors offers valuable insights for developing resistant crops through genetic engineering and selective breeding. By leveraging the understanding of NHR, agricultural practices can be enhanced to mitigate the impact of pathogenic fungi, ensuring sustainable crop production and food security.

###

References

DOI

10.1093/hr/uhae078

Original Source URL

https://doi.org/10.1093/hr/uhae078

Funding information

This work was financially supported by National Natural Science Foundation of China (32302301, U1903206) and the Talent Program of Anhui Agricultural University (rc342213).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.



Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button